82 research outputs found

    Absolute FKBP binding affinities obtained via non-equilibrium unbinding simulations

    Full text link
    We compute absolute binding affinities for two ligands bound to the FKBP protein using non-equilibrium unbinding simulations. The methodology is straight-forward, requiring little or no modification to many modern molecular simulation packages. The approach makes use of a physical pathway, eliminating the need for complicated alchemical decoupling schemes. Results of this study are promising. For the ligands studied here the binding affinities are typically estimated within less than 4.0 kJ/mol of the target values; and the target values are within less than 1.0 kJ/mol of experiment. These results suggest that non-equilibrium simulation could provide a simple and robust means to estimate protein-ligand binding affinities.Comment: 9 pages, 3 figures (no necessary color). Changes made to methodology and results between revision

    Resolution exchange simulation

    Full text link
    We extend replica exchange simulation in two ways, and apply our approaches to biomolecules. The first generalization permits exchange simulation between models of differing resolution -- i.e., between detailed and coarse-grained models. Such ``resolution exchange'' can be applied to molecular systems or spin systems. The second extension is to ``pseudo-exchange'' simulations, which require little CPU usage for most levels of the exchange ladder and also substantially reduces the need for overlap between levels. Pseudo exchanges can be used in either replica or resolution exchange simulations. We perform efficient, converged simulations of a 50-atom peptide to illustrate the new approaches.Comment: revised manuscript: 4.2 pages, 3 figure
    • …
    corecore